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ARTICLE INFO ABSTRACT

Keywords: pH (low) insertion peptide (pHLIP) is a polypeptide from the third transmembrane helix of bacteriorhodopsin.
pHLIP The pH-dependent membrane insertion of pHLIP has been conveniently exploited for translocation of cargo
Ester lipids molecules and as a novel imaging agent in cancer biology due to low extracellular pH in cancer tissues. Although

Ether lipids the application of pHLIP for imaging tumor and targeted drug delivery is well studied, literature on pHLIP-
Membrane interaction . R . . . P . . S .
REES membrane interaction is relatively less studied. Keeping this in mind, we explored the differential interaction of

PHLIP with ester and ether lipid membranes utilizing fluorescence and CD spectroscopy. We report, for the first
time, higher binding affinity of pHLIP toward ether lipid relative to ester lipid membranes. There results gain
relevance since Halobacterium halobium (source of bacteriorhodopsin) is enriched with ether lipids. In addition,
we monitored the difference in microenvironment around pHLIP tryptophans utilizing red edge excitation shift
and observed increased motional restriction of water molecules in the interfacial region in ether lipid mem-
branes. These changes were accompanied with increase in helicity of pHLIP in ether lipid relative to ester lipid
membranes. Our results assume further relevance since ether lipids are upregulated in cancer cells and have
emerged as potential biomarkers of various diseases including cancer.

Cancer biomarker

1. Introduction have gained considerable popularity in monitoring lipid-peptide inter-

action due to their sensitivity, suitable time resolution and multiplicity

Biological membranes are complex two-dimensional, micro-het-
erogeneous fluids that contain a variety of lipids and proteins (Pal and
Chattopadhyay, 2017). The majority of membrane functions are carried
out by membrane proteins which also act as major drug targets (Drews,
2000; Dailey et al., 2009). A considerable portion of membrane proteins
and peptides remains in close contact with membrane lipids, thereby
allowing their function to be modulated by surrounding lipids, either
via specific lipid-protein (or lipid-peptide) interaction or by modulation
of membrane physical properties, or a combination of both mechanisms
(Lee, 2004; Sanderson, 2005; Jafurulla et al., 2019). It is therefore es-
sential to understand and appreciate the subtle interplay between
membrane lipids and proteins (or peptides) to obtain a comprehensive
understanding of membrane function. Fluorescence-based approaches

of measurable parameters (Chattopadhyay and Raghuraman, 2004). In
addition, the presence of naturally fluorescent tryptophans has helped
in sensitive studies of lipid-peptide interaction using fluorescence-based
spectroscopic approaches.

pH (low) insertion peptide (pHLIP) is a 36-residue polypeptide with
the sequence GGEQNPIYWARYADWLFTTPLLLLDLALLVDADEGT
(Fig. 1a), derived from the third transmembrane helix (helix-C) of
bacteriorhodopsin (Hunt et al., 1997; Reshetnyak et al., 2007). The
majority of amino acid residues in the peptide are hydrophobic in
nature, except few charged residues that impart an overall charge of -5
at physiological pH (Rao et al., 2018). The amino acid sequence of
pHLIP is responsible for its amphipathic nature, which is a common
feature observed in membrane-interacting peptides. The presence of
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Fig. 1. Peptide sequence and structure of phospholipids used. (a) The amino
acid sequence of pHLIP. The putative transmembrane region is shown in blue
and the tryptophan residues are highlighted. Panels (b) and (c) show chemical
structures of the phospholipids used (DOPC and DODPC, respectively). The
ester and ether linkages in the phospholipids are highlighted.

two tryptophan residues makes pHLIP intrinsically fluorescent which
facilitates the monitoring of peptide conformation, dynamics and
membrane interaction utilizing fluorescence-based approaches.

A major attribute of pHLIP is its ability to exist in various con-
formations, which are dependent on peptide concentration, pH, and the
presence of membranes (Reshetnyak et al., 2007). In aqueous solution
(pH 8), pHLIP is unstructured and adopts a random coil conformation
(denoted as state I), and upon interaction with lipids, is superficially
adsorbed to membranes (state II). Lowering the pH to ~4 results in
adoption of a-helical conformation, leading to spontaneous insertion of
the peptide into membranes (state III) with the N-terminus on the ex-
tracellular side and the C-terminus on the intracellular side. It was
previously shown that pHLIP insertion is triggered by protonation of
four aspartate residues at acidic pH, which leads to an increase in
peptide hydrophobicity and induces its insertion into membranes (Hunt
et al., 1997; Reshetnyak et al., 2007). The mutation of the two aspartate
residues (in the transmembrane region) was shown to result in loss of
pH-dependent membrane insertion (Andreev et al., 2007). Recent stu-
dies utilizing a combination of spectroscopic approaches that include
circular dichroism (CD), fluorescence and solid-state nuclear magnetic
resonance (NMR) support a multistage model of pHLIP insertion into
membranes (Scott et al., 2017; Otieno et al., 2018). The sequential
protonation of four aspartate residues at distinct pH values triggers the

Chemistry and Physics of Lipids 226 (2020) 104849

formation of different intermediate states between the membrane-ad-
sorbed and inserted forms of pHLIP. Alteration of positions of aspartate
residues in pHLIP led to changes in the pKa of membrane insertion,
suggesting the role of these residues in the membrane-translocated
conformation of pHLIP (Fendos et al., 2013).

The pH-dependent membrane insertion of pHLIP has been success-
fully utilized for the translocation of cargo molecules (such as phal-
loidin and fluorescent cyclic hexapeptides) across the membrane bi-
layer at low pH (Reshetnyak et al., 2006; Thévenin et al., 2009; An
et al., 2010). Apart from intracellular delivery of cargo molecules,
pHLIP has been successfully used as a novel imaging agent in cancer
biology since low (acidic) extracellular pH is a feature associated with
tumor tissues (Reshetnyak et al., 2011; Adochite et al., 2014; Deacon
et al., 2015; Burns et al., 2015; Wyatt et al., 2017). The use of pHLIP in
tumor imaging and targeted intracellular delivery is convenient and
effective, since the trigger for insertion can be easily modulated, with
the inserted form not affecting membrane integrity (Zoonens et al.,
2008), or cellular toxicity (Andreev et al., 2007).

Knowledge of the aggregation behavior of pHLIP is essential before
monitoring and quantifying its interaction with membranes. Previous
work has shown that pHLIP exists in the monomeric form up to a
concentration of ~7uM beyond which it undergoes aggregation
(Reshetnyak et al., 2007; Rao et al., 2018). Several studies on the
binding of pHLIP to membranes have provided useful insights into the
intermediate states (Otieno et al., 2018), free energy of transition be-
tween the different states (Reshetnyak et al., 2008), topology
(Reshetnyak et al., 2007) and kinetics of membrane insertion and exit
(Tang and Gai, 2008; Andreev et al., 2010; Karabadzhak et al., 2012).
The pH-dependence of membrane insertion and binding exhibited by
pHLIP makes it a suitable model peptide for exploring lipid-peptide
interaction.

In this work, we utilized the intrinsic fluorescence of tryptophan
residues (located at positions 9 and 15) of pHLIP (Fig. 1a), to monitor
the differential interaction of pHLIP with representative ester- and
ether-linked phospholipid membranes (Fig. 1(b,c)). This assumes re-
levance since native membranes of bacteriorhodopsin (from where
pHLIP is derived) are enriched in ether lipids (Kates et al., 1965;
Marshall and Brown, 1968; Henderson, 1977; Renner et al., 2005).
Earlier work utilizing fluorescence spectroscopy, infrared spectroscopy,
monolayer studies and differential scanning calorimetry have reported
differences in membrane organization of ester- and ether-linked phos-
pholipids (Smaby et al., 1983; Mattjus et al., 1996; Lewis et al., 1996;
Mukherjee and Chattopadhyay, 2005). Since the physicochemical
properties of the interfacial region, which depend on the type of linkage
(i.e. ester vs ether; see Fig. 1(b,c)) of the acyl chains to the glycerol
backbone, could modulate peptide conformation and binding, we
monitored the interaction of pHLIP to ester- and ether-linked lipid
membranes. Our results show that membrane-inserted pHLIP exhibits
higher affinity to ether-linked membranes relative to ester-linked
membranes. Importantly, pHLIP tryptophans exhibited differential red
edge excitation shift (REES) in ester and ether lipid membranes in the
membrane-inserted form, clearly highlighting the difference in micro-
environment experienced by these tryptophans. These observations are
supported by increased helicity of pHLIP bound to ether lipid compared
to ester lipid membranes, as monitored by CD measurements. Taken
together, our results constitute the first report where differential in-
teraction of pHLIP bound to membranes of ether- and ester-linked lipids
is reported. More importantly, these results assume greater relevance
since ether lipids are upregulated in cancer cells (Snyder and Wood,
1969; Howard et al., 1972; Albert and Anderson, 1977; Roos and
Choppin, 1984; Benjamin et al., 2013; Jaffres et al., 2016) and therefore
have emerged as potential biomarkers in cancer pathophysiology.
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2. Materials and methods
2.1. Materials

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-di-O-(9Z-oc-
tadecenyl)-sn-glycero-3-phosphocholine (DODPC), 1,2-dioleoyl-sn-gly-
cero-3-phosphotempocholine  (Tempo-PC), 1-palmitoyl-2-(5-doxyl)
stearoyl-sn-glycero-3-phosphocholine (5-PC), and 1-palmitoyl-2-(12-
doxyl)stearoyl-sn-glycero-3-phosphocholine (12-PC) were obtained
from Avanti Polar Lipids (Alabaster, AL). 2-(9-Anthroyloxy)stearic acid
(2-AS) and 12-(9-anthroyloxy)stearic acid (12-AS) were purchased from
Molecular Probes/Invitrogen (Eugene, OR). 1,2-Dimyristoyl-sn-glycero-
3-phosphocholine (DMPC), urea (BioUltra grade) and dialysis kit
(PURD10005) with 1 kDa cut-off were purchased from Sigma Chemical
Co. (St. Louis, MO). All other chemicals used were of the highest purity
available. Water was purified through a Millipore (Bedford, MA) Milli-
Q system and used throughout. Details of phospholipid assay, thin layer
chromatography and peptide synthesis are provided in Supplementary
Material (see section S1).

2.2. Preparation of peptide solutions

pHLIP was dissolved in buffer containing 6 M urea by intermittent
vortexing (~10min) at room temperature (~23 °C) as the peptide is
hydrophobic in nature and susceptible to aggregation (Reshetnyak
et al.,, 2007; Rao et al., 2018). Urea was removed from the peptide
solution by dialysis as described previously (Rao et al., 2018). Con-
centration of pHLIP was estimated from its molar extinction coefficient
(e) of 13,940 M~ cm ! at 280 nm (Reshetnyak et al., 2007). Working
stocks (2 or 5 uM) of the peptide were freshly prepared at pH 4 (10 mM
citrate/phosphate buffer) or pH 8 (10 mM phosphate buffer) from
secondary stock solutions (~10 pM).

2.3. Sample preparation

All experiments (except depth measurements) were performed with
large unilamellar vesicles (LUVs) of 100 nm diameter of DOPC or
DODPC, as described previously (Chaudhuri and Chattopadhyay,
2014). The concentration of pHLIP was kept constant at 2 uM, while the
lipid concentration was varied from 25 to 600 uM for binding experi-
ments utilizing tryptophan fluorescence. For CD measurements, peptide
concentration was 5pM, whereas the lipid concentration was 750 uM,
to maintain the lipid/peptide ratio of 150 (mol/mol). To incorporate
pHLIP into membranes, an aliquot of the peptide from a freshly pre-
pared stock (either at pH 4 or 8) was added to the pre-formed vesicles
and mixed well. See Supplementary Material (section S2) for more
details.

2.4. Binding studies utilizing tryptophan fluorescence

Steady state fluorescence measurements were performed using a
Fluorolog-3 Model FL-3-22 spectrofluorometer (Horiba Jobin Yvon,
Edison, NJ) in the corrected spectrum mode, as described previously
(Chakraborty and Chattopadhyay, 2017). pHLIP was incorporated into
DOPC or DODPC membranes by adding an aliquot from a working stock
solution (either pH 4 or pH 8) to the pre-formed vesicles. Data obtained
were fitted to a simple hyperbolic function utilizing Sigma Plot (Systat
Software Inc., San Jose, CA), according to the following equation:

F/Fo = Bmax [Lipid]/(Kq + [Lipid]) (€Y

where F, is the fluorescence intensity in buffer, F is the fluorescence
intensity in the presence of lipid vesicles (at various concentrations),
Biax is the maximum binding and Ky is the apparent dissociation con-
stant for binding of pHLIP to membranes.

Chemistry and Physics of Lipids 226 (2020) 104849

2.5. REES measurements

REES measurements utilizing tryptophan fluorescence of the mem-
brane-inserted form of pHLIP (at pH 4) were performed in a Fluorolog-3
Model FL-3-22 spectrofluorometer (Horiba Jobin Yvon, Edison, NJ) as
described previously (Chakraborty and Chattopadhyay, 2017).

2.6. Depth measurements using the parallax method

Membrane penetration depths of pHLIP tryptophans were estimated
by the parallax method (Chattopadhyay and London, 1987). The actual
spin (nitroxide) contents of the spin-labeled phospholipids (Tempo-, 5-
and 12-PC) were assayed using fluorescence quenching of anthroyloxy-
labeled fatty acids (2- and 12-AS) as described previously (Abrams and
London, 1993). Liposomes were made by the ethanol injection method
(Kremer et al., 1977) and depth measurements were performed as de-
scribed previously (Chaudhuri and Chattopadhyay, 2014), with some
modifications. pHLIP was incorporated into membranes by adding an
aliquot from a freshly prepared working stock solution (pH 4) to the
pre-formed vesicles such that the lipid/peptide ratio was 200 (mol/
mol). See Supplementary Material (section S3) for more details.

2.7. Circular dichroism (CD) measurements

CD measurements were performed at room temperature (~23 °C)
on a Chirascan Plus Spectropolarimeter (Applied Photophysics, Surrey,
UK) calibrated with (+)-10-camphorsulfonic acid (Chen and Yang,
1977), as described previously (Rao et al., 2018). Spectra were recorded
in 0.2nm wavelength increments with a band width of 2nm and an
integration time of 2s. The CD spectra of pHLIP in membranes were
deconvoluted using the web-based CD analysis tool, DichroWeb
(Whitmore and Wallace, 2004, 2008), applying the CDSSTR method
(Sreerama and Woody, 2000) and using SP175 (Lees et al., 2006) as the
reference data set for analysis. See Supplementary Material (section S4)
for more details.

3. Results

3.1. Fluorescence emission characteristics of pHLIP tryptophans and binding
in ester and ether lipid membranes

Tryptophan fluorescence is sensitive to its microenvironment (Kirby
and Steiner, 1970; Eftink, 1991; Chattopadhyay et al., 2005), thereby
making it an appropriate reporter of pHLIP binding to membranes
composed of ether- and ester-linked lipids. The fluorescence emission
spectra of tryptophans in membrane-inserted pHLIP (state III) in DOPC
(ester-linked) and DODPC (ether-linked) lipid membranes at pH 4 are
shown in Fig. 2. The fluorescence emission spectrum of pHLIP in pH 4
buffer is also shown. The figure shows that the fluorescence emission
maximum (We have used the term maximum of fluorescence emission
in a broad sense here. In every case, we have monitored the wavelength
corresponding to maximum fluorescence intensity, as well as the center
of mass of the fluorescence emission, in the symmetric part of the
spectrum. In most cases, both these methods yielded the same wave-
length.) of pHLIP in buffer was 333 nm. The emission maximum of
membrane-inserted pHLIP in both DOPC and DODPC membranes was
found to be 330 nm, displaying a 3nm blue shift due to membrane
insertion. The inset shows the shift in fluorescence emission maximum
for pHLIP upon binding to DOPC and DODPC membranes.

The change in normalized fluorescence intensity of membrane-in-
serted pHLIP in DOPC and DODPC membranes with increasing lipid/
peptide ratio (mol/mol) at pH 4 is shown in Fig. 3. The figure shows
that fluorescence intensity exhibits progressive increase upon in-
creasing lipid/peptide ratio (i.e., with increasing lipid concentration,
since peptide concentration is kept constant), thereby indicating in-
crease in population of bound peptide with increasing lipid
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Fig. 2. Fluorescence emission characteristics of membrane-inserted pHLIP in
ester and ether lipid membranes at pH 4. Representative fluorescence emission
spectra of pHLIP in DOPC (=) and DODPC (- - -) membranes. The emission
spectra of pHLIP in buffer (—) at pH 4 is also shown. The inset shows the shift
in fluorescence emission maximum for pHLIP upon binding to DOPC and
DODPC membranes. The concentration of pHLIP was 2 pM and membrane-
bound spectra correspond to lipid/peptide ratio of 200 (mol/mol). The ex-
citation wavelength was 295 nm. Experiments were carried out at room tem-
perature (~23°C). See Section 2 for other details.
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Fig. 3. Binding of pHLIP with ester and ether lipid membranes utilizing tryp-
tophan fluorescence. Change in normalized fluorescence intensity with in-
creasing lipid/peptide ratio (mol/mol) for DOPC (@) and DODPC (A) mem-
branes at pH 4. The lower plot (M) shows the change in normalized fluorescence
intensity with increasing lipid/peptide ratio at pH 8 in case of DOPC mem-
branes (data for DODPC membranes are similar and not shown). As evident
from the binding plots, the normalized fluorescence intensity appears by and
large constant, beyond lipid/peptide ratio of 200 (mol/mol, highlighted by a
shaded box), thereby indicating that pHLIP is predominantly membrane-bound
under these conditions. The concentration of pHLIP was 2 uM in all cases. The
excitation wavelength was 295nm. Experiments were carried out at room
temperature (~23°C). The dashed lines are obtained upon fitting the data
points to Eq. (1) and the apparent dissociation constants for binding of pHLIP to
ester and ether lipid membranes are shown in Table 1. See Section 2 for other
details.

concentration, in both DOPC and DODPC membranes. As evident from
the binding plots, the increase in normalized fluorescence intensity
appears to stabilize beyond lipid/peptide ratio of 200 (mol/mol),
thereby indicating that pHLIP is predominantly membrane-bound
under these conditions. We therefore chose to carry out all fluorescence
measurements under these conditions in which pHLIP was mostly
bound to membranes.

The binding plots were analyzed and fitted to the classical Langmuir
model for adsorption of ligand to multiple, equivalent, and non-inter-
acting binding sites (Chakraborty et al., 2017) which provided apparent
dissociation constant (K4q) for pHLIP binding to DOPC and DODPC
membranes (shown in Table 1). Table 1 shows that K4 for pHLIP
binding to DOPC membranes was ~ 3 times higher relative to K4 for
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Table 1
Binding of pHLIP to ester and ether lipid membranes*.

Membrane type Apparent dissociation constant (Kq)” (uM)

100.3 = 18.8
33.2 = 5.3

DOPC membranes
DODPC membranes

* Data shown are means + SE of at least three independent measurements.
See Section 2 for other details.
# Galculated using Eq. (1).

pHLIP binding to DODPC membranes. This implies higher binding af-
finity of pHLIP in ether lipid (DODPC) membranes relative to that in
ester lipid (DOPC) membranes. As a control, we repeated these mea-
surements at pH 8, where pHLIP does not insert into the membrane.
Fig. 3 shows that the fluorescence intensity of pHLIP remained in-
variant with increasing lipid/peptide ratio in ester lipid (DOPC) mem-
branes at pH 8, thereby implying negligible change in pHLIP trypto-
phan microenvironment in the membrane-adsorbed (state II) form
(similar data with ether lipids not shown). These results bring out the
preferential interaction of pHLIP with ether lipids (see Discussion).

3.2. Restricted microenvironment of tryptophan residues in the membrane-
inserted form of pHLIP in ester and ether lipid membranes

The hydration of ester and ether lipid membrane interface has been
reported to be very different (Gawrisch et al., 1992; Guler et al., 2009).
Since hydration at the lipid-protein interface plays a major role in lipid-
protein interaction (Ho and Stubbs, 1992), we carried out red edge
excitation shift (REES) measurements to monitor the microenvironment
around tryptophans in membrane-inserted pHLIP in ester and ether
lipid membranes. REES is conventionally defined as the shift in the
wavelength of maximum fluorescence emission toward higher wave-
lengths, induced by a shift in the excitation wavelength toward the red
edge of the absorption spectrum. REES gains relevance in motionally
constrained environments where relaxation time of excited state dipoles
in the solvent shell surrounding the fluorophore is equivalent to or
longer than the fluorescence lifetime (Mukherjee and Chattopadhyay,
1995; Hof, 1999; Demchenko, 2002; Chattopadhyay, 2003;
Raghuraman et al., 2005; Demchenko, 2008; Haldar et al., 2011;
Chattopadhyay and Haldar, 2014). REES stems from relatively slow
rates of solvent (water in biological systems) reorientation (compared
to fluorescence lifetime) around an excited state fluorophore dipole,
thereby allowing the monitoring of microenvironment-induced mo-
tional restriction imposed on water molecules in the immediate vicinity
of the fluorophore. Hydration dynamics is important in the context of
conformation of membrane peptides and proteins (Haldar and
Chattopadhyay, 2012).

The shift in the maximum of fluorescence emission of membrane-
inserted pHLIP as a function of excitation wavelength in ester and ether
lipid membranes is shown in Fig. 4. Upon excitation at 280 nm, the
tryptophans in membrane-inserted pHLIP at pH 4 display an emission
maximum at 330nm in both DOPC and DODPC membranes. The
emission maximum exhibited a shift toward longer wavelengths when
the excitation wavelength was progressively increased. In case of DOPC
membranes, the emission maximum shifted to 338 nm when excited at
307 nm, resulting in a REES of 8 nm. The shift in the emission maximum
was larger in case of pHLIP in DODPC membranes, since the emission
maximum was 343 nm upon excitation at 307 nm. This corresponds to a
REES of 13 nm. These values of REES are shown in the inset of Fig. 4.
The differential magnitude of REES displayed by pHLIP in DOPC and
DODPC membranes could be indicative of the difference in micro-
environment of pHLIP tryptophans in these membranes.
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Fig. 4. Differential REES of pHLIP in ester and ether lipid membranes. Effect of
changing excitation wavelength on the wavelength of maximum emission of
pHLIP in DOPC (O) and DODPC (A) lipid membranes at pH 4. The inset shows
the magnitude of REES of pHLIP tryptophans in DOPC and DODPC membranes.
The magnitude of REES corresponds to the total shift in the emission maximum
when the excitation wavelength is changed from 280 to 307 nm. The con-
centration of pHLIP was 2 uM and the lipid/peptide ratio was maintained at
200 (mol/mol, highlighted by the shaded box in Fig. 3, see legend to Fig. 3) to
ensure that data correspond to a predominantly membrane-bound population of
pHLIP. Experiments were carried out at room temperature (~23°C). Lines
joining the data points are provided merely as viewing guides. See Section 2 for
other details.

3.3. Membrane penetration depths of pHLIP tryptophans in ester and ether
lipid membranes

Tryptophan residues in membrane proteins and peptides typically
exhibit interfacial localization in the membrane (Chattopadhyay et al.,
1997; Killian and von Heijne, 2000; Kelkar and Chattopadhyay, 2006;
Koeppe, 2007). The membrane interface is characterized by highest
polarity and lowest mobility since there is a gradient of polarity and
mobility along the bilayer normal (i.e., the z-axis) (Chattopadhyay and
Mukherjee, 1999; Haldar et al., 2011; Haldar and Chattopadhyay,
2012; Pal and Chattopadhyay, 2017). In order to examine the depth of
tryptophan residues in membrane-inserted pHLIP in DOPC and DODPC
membranes, we used the parallax method (Chattopadhyay and London,
1987) to determine the average penetration depth of pHLIP tryptophans
in DOPC and DODPC membranes. The average depth of pHLIP trypto-
phans was calculated using the equation:

Zer = Lo + {[(-1/nC) In (F1/F2)-Ly%1/ 2 Ly} 2

where z.r is the average distance of the tryptophans from the center of
the bilayer, L; is the distance of the shallow quencher from the center
of the bilayer, Ly, is difference in depth between the two quenchers and
C is the two-dimensional quencher concentration (molecules/f\z) in the
plane of the membrane. Here, F,/F, is the ratio of F;/F, and Fy/F,,
where F; and F, represent fluorescence intensities in presence of the
shallow and deep quencher, respectively, both at the same quencher
concentration C, and F, is the fluorescence intensity without any
quencher. All bilayer parameters used were the same as described
previously (Chattopadhyay and London, 1987).

The average depths of penetration of tryptophan residues in the
membrane-inserted form of pHLIP are shown in Table 2. The table
shows that tryptophan residues of pHLIP are localized at the membrane
interface, as apparent from average penetration depths of ~16 and
~15 A from the center of the bilayer, in DOPC and DODPC membranes,
respectively. The interfacial localization of tryptophans could facilitate
appropriate interaction of pHLIP with DOPC and DODPC membranes
(Kelkar and Chattopadhyay, 2006).
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Table 2
Average membrane penetration depths of tryptophans of pHLIP in ester and
ether lipid membranes’.

Membrane type Calculated distance from the bilayer center z. A)

DOPC membranes ~16
DODPC membranes ~15

" Depths were calculated from fluorescence quenchings obtained with sam-
ples containing 10 mol% of Tempo- and 5-PC and using Eq. (2). Samples were
excited at 295nm and emission was collected at 330 nm. The lipid/peptide
ratio was 200 (mol/mol) and the concentration of pHLIP was 1.6 uM in all
cases. See Section 2 for other details.
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Fig. 5. Secondary structure of pHLIP in ester and ether lipid membranes.
Representative far-UV CD spectra of pHLIP in DOPC (—), DODPC (- - -) mem-
branes and in buffer () at pH 4. The inset shows the increase in helicity
(calculated as ratio of mean residue ellipticities at 222 and 208 nm) of pHLIP in
DODPC membranes, relative to DOPC membranes. The concentration of peptide
was 5uM in all cases, and the lipid/peptide ratio was 150 (mol/mol).
Experiments were carried out at room temperature (~ 23 °C). See Section 2 for

other details.

3.4. Secondary structure of membrane-inserted pHLIP in ester and ether
lipid membranes

As stated above, pHLIP is known to adopt a-helical conformation in
membranes upon lowering the pH to 4 (Reshetnyak et al., 2007). Fig. 5
shows that pHLIP adopts an a-helical structure (characterized by peaks
at 208 and 222 nm) in both DOPC and DODPC membranes. Interest-
ingly, Fig. 5 shows an increase in the helicity of pHLIP (~10 %) in
DODPC membranes relative to DOPC membranes, as estimated by the
ratio of mean residue ellipticities at 222 and 208 nm (see inset). Further
analysis using the DichroWeb tool revealed ~8 % higher a-helical
content of pHLIP in DODPC membranes relative to DOPC membranes
(see Table S1). The increased helicity of pHLIP in ether lipid mem-
branes could be correlated with increased REES in these membranes
(Fig. 4). These observations assume relevance in the context of previous
reports showing that the restricted microenvironment experienced by
tryptophan residues localized at the membrane interface could act as a
sensitive indicator of peptide secondary structure (Chattopadhyay
et al.,, 2003; Chattopadhyay and Haldar, 2014; Chakraborty and
Chattopadhyay, 2017; Pal et al., 2018).

4. Discussion

The interaction of peptides with membranes is implicated in several
important membrane-associated biological phenomena that include the
action of antimicrobial peptides, hormone-receptor interactions and
viral fusion (Raghuraman and Chattopadhyay, 2007; Kelkar and
Chattopadhyay, 2007; Galdiero et al., 2013; Herrera et al., 2016). In
this work, we explored the differential interaction of pHLIP with re-
presentative ester (DOPC) and ether (DODPC) lipid membranes
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utilizing fluorescence and CD spectroscopic approaches. The choice of
lipids ensured that only the interfacial chemistry of the membrane is
altered from ester- to ether-type linkage (Fig. 1b,c), without changing
the lipid headgroup or acyl chain length. The pH-dependent insertion of
pHLIP into membranes is an interesting aspect of the peptide which
provides the opportunity for imaging tumor tissue and targeted drug
delivery (Reshetnyak et al., 2011; Adochite et al., 2014; Deacon et al.,
2015; Burns et al., 2015; Wyatt et al., 2017; Rinaldi et al., 2018; Son
et al,, 2019). In this context, exploring the mechanism of pHLIP-
membrane interaction assumes relevance since it could help in opti-
mizing therapeutic strategies for the effective application of pHLIP.
While there is extensive literature on the application of pHLIP for
imaging tumor tissue and targeted drug delivery, relatively less is
known about the molecular mechanism and biophysical basis of pHLIP-
membrane interaction (Barrera et al., 2012; Kyrychenko et al., 2015;
Scott et al., 2015; Karabadzhak et al., 2018; Westerfield et al., 2019;
Scott et al., 2019). Our results on the interaction of pHLIP with ester
and ether lipid membranes is relevant in this backdrop.

Our results show that pHLIP exhibits higher affinity (~3 times) to
ether lipid membranes relative to ester lipid membranes. In addition,
pHLIP tryptophans exhibited differential extent of REES in membranes
of ester and ether lipids, with increased REES observed for pHLIP in
ether (DODPC) lipid membranes. This indicates that the local micro-
environment around pHLIP tryptophans are different in these mem-
branes and more restricted (in terms of restriction of interfacial water
molecules) in case of ether lipid membranes. This was accompanied by
an increase in the helicity of pHLIP when bound to ether lipid mem-
branes relative to ester lipid membranes. In a parenthetical fashion, we
note that the difference in REES and CD data for pHLIP in ester and
ether lipid membranes could represent an upper limit, due to slightly
different amounts of bound peptide in these membranes. Taken to-
gether, these results show preference of pHLIP for ether lipids. A
schematic representation of differential interaction of pHLIP in ester vs
ether lipid membranes is shown in Fig. 6. Our results assume sig-
nificance in view of the fact that purple membrane of Halobacterium
halobium (which serves as the native membrane for bacteriorhodopsin,
from which pHLIP is derived) is enriched with ether lipids (Kates et al.,
1965; Marshall and Brown, 1968; Henderson, 1977; Renner et al.,
2005).

The differential interaction and binding of pHLIP with ester and
ether lipid membranes could have its origin in the intrinsic differences
in physicochemical properties of the membrane interface, depending on
the type of linkage (e.g., ester or ether) of the constituent lipids. A
fundamental difference between ester and ether lipids is the different
hybridization state (and therefore geometry) of the sp* carbon of the
carbonyl group in ester lipids and the sp> carbon of the ether linkage
(Mukherjee and Chattopadhyay, 2005). This change in lipid molecular
structure results in increased hydration in ether phospholipids. The
physicochemical aspects of interfacial water molecules in ester and
ether lipid membranes have been previously monitored utilizing
fluorescence and other spectroscopic approaches (Sommer et al., 1990;
Gawrisch et al.,, 1992; Hutterer et al., 1997; Mukherjee and
Chattopadhyay, 2005; Guler et al., 2009; Balleza et al., 2014; Aloi et al.,
2017). Slightly increased water penetration (Smaby et al., 1983;
Sommer et al., 1990; Lewis et al., 1996) and the ordered nature of water
molecules (Guler et al., 2009) in ether lipid membranes relative to ester
lipid membranes have been reported. Previous work by us and others,
utilizing fluorescence spectroscopy, has shown differences in emission
maximum, fluorescence lifetimes and anisotropy of interfacial probes in
ether lipid membranes relative to ester lipid membranes. These results
indicate tighter packing and a more polar environment in ether lipid
membranes (Sommer et al., 1990; Hutterer et al., 1997; Mukherjee and
Chattopadhyay, 2005; Balleza et al., 2014). In addition, these results
are supported by molecular dynamics simulations which show that
water in the interfacial region of ether membranes is more restricted,
exhibiting slower translational and rotational motion relative to ester
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Fig. 6. Differential interaction of pHLIP with ester and ether lipid membranes.
A schematic representation of the differential sensitivity of pHLIP in re-
presentative ester and ether lipid membranes at pH 4. In ether lipid membranes,
PHLIP exhibited a higher binding affinity, enhanced motional restriction in the
microenvironment and increase in peptide helicity. The tryptophans at posi-
tions 9 and 15 are highlighted.

lipid membranes (Shinoda et al., 2004; Kruczek et al., 2017). In addi-
tion, membrane dipole potential has been reported to be different in
ester and ether lipid membranes (Gawrisch et al., 1992; Shinoda et al.,
2004; Lairion and Disalvo, 2007; Berkovich et al., 2012; Kruczek et al.,
2017; Shen et al., 2019). Membrane dipole potential is the electrostatic
potential difference within the membrane bilayer due to the non-
random arrangement of amphiphile dipoles and water molecules at the
membrane interface (Clarke, 2001; Sarkar et al., 2017). Taken together,
the modulation in the interaction of pHLIP with DOPC and DODPC
membranes, in terms of binding affinity, restricted microenvironment
and peptide conformation, could be attributed to higher membrane
order, increased water penetration and possibly lower dipole potential
in ether lipid membranes.

These results assume relevance in view of the fact that ether lipids
are known to be elevated in cancer tissues and have emerged as po-
tential biomarkers of various pathophysiological conditions, including
cancer, neurodegenerative diseases and metabolic disorders (Snyder
and Wood, 1969; Howard et al., 1972; Albert and Anderson, 1977; Roos
and Choppin, 1984; Benjamin et al., 2013; Jaffres et al., 2016; Dean and
Lodhi, 2018; Vidavsky et al., 2019). We envision that insight into the
lipid binding specificity of pHLIP, e.g., higher affinity of pHLIP toward
ether-linked membranes, could be utilized to better engineer pHLIP to
improve translocation across membranes for more efficient therapeutic
use in disease conditions.
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